
That doesn’t sound right: Evaluating speech transcription
quality in field linguistics corpora

Éric Le Ferrand1, Bo Jiang1, Joshua Hartshorne2, Emily Prud’hommeaux1

1Department of Computer Science, Boston College, USA
2MGH Institute of Health Professions, USA

Abstract

Incorporating automatic speech recognition
(ASR) into field linguistics workflows for lan-
guage documentation has become increasingly
common. While ASR performance has seen im-
provements in low-resource settings, obstacles
remain when training models on data collected
by documentary linguists. One notable chal-
lenge lies in the way that this data is curated.
ASR datasets built from spontaneous speech
are typically recorded in consistent settings and
transcribed by native speakers following a set
of well designed guidelines. In contrast, field
linguists collect data in whatever format it is de-
livered by their language consultants and tran-
scribe it as best they can given their language
skills and the quality of the recording. This
approach to data curation, while valuable for
linguistic research, does not always align with
the standards required for training robust ASR
models. In this paper, we explore methods for
identifying speech transcriptions in fieldwork
data that may be unsuitable for training ASR
models. We focus on two complimentary au-
tomated measures of transcription quality that
can be used to identify transcripts with charac-
teristics that are common in field data but could
be detrimental to ASR training. We show that
one of the metrics is highly effective at retriev-
ing these types of transcriptions. Additionally,
we find that filtering datasets using this metric
of transcription quality reduces WER both in
controlled experiments using simulated field-
work with artificially corrupted data and in real
fieldwork corpora.

1 Introduction

Automatic speech recognition (ASR) can support
the creation of new linguistic resources for under-
resourced and endangered languages, but such lan-
guages – which make up the vast majority of the
world’s 7000+ languages – vary considerably in
their quantity of transcribed speech data. While
some languages have well-curated speech datasets

sourced from educational materials, mass media, or
crowdsourcing efforts, many only have field record-
ings made by linguists as their primary source of
speech data. Field linguists, whose work centers
on describing languages and analyzing their lin-
guistic properties, collect data primarily to support
their academic research and the activities of the
language community. Few linguists collect data
with the goal of creating high-quality datasets for
training speech technology models (Hanke, 2017;
Le Ferrand, 2023). As a result, speech data from
fieldwork may be only partially or unfaithfully tran-
scribed due to issues of recording quality and the
language skills of the linguist. Additionally, field-
work transcripts often include ancillary information
making it difficult to differentiate between tran-
scription (word-level renderings of the speech) and
annotation (glosses, translations, comments).

ASR models for widely-spoken languages are
trained on enough professionally recorded and tran-
scribed data that including a small number of inac-
curately transcribed utterances is unlikely to signif-
icantly affect overall performance. For languages
where data is scarce, however, even a small portion
of low-quality data can severely degrade model per-
formance. Detecting low quality transcripts can be
done manually, but this process is tedious and time-
consuming, underscoring the need for an automatic
method to evaluate transcription quality.

In this paper, we explore two metrics for auto-
matically assessing the transcription quality and
accuracy of speech datasets: Phonetic Distance
Match (PDM), a novel metric based on phoneme
recognition, and the posterior probability of a Con-
nectionist Temporal Classification (Graves and
Graves, 2012) alignment (CTC). We evaluate the
utility of these metrics for identifying poor tran-
scriptions through experiments on clean datasets
that we synthetically corrupt in ways that simulate
common fieldwork data quality errors. We then
demonstrate the ability of PDM in particular to



identify these types of errors. Finally we show that
using our metrics to filter out these types of inaccu-
rate transcripts can yield substantial improvements
in ASR accuracy in both simulated and real-world
fieldwork datasets.

2 Related work

Prior related work on filtering inaccurate transcripts
has focused on leveraging ASR output itself, such
as using the confidence score of an ASR model
(Huang et al., 2013; Su and Xu, 2015; Koctúr et al.,
2016) or using multiple ASR models to generate
multiple predictions for the same speech utterance
(Fiscus, 1997; Cucu et al., 2014; Li et al., 2016;
Jouvet and Fohr, 2014). These methods, while use-
ful in high-resource settings, assume the existence
of an ASR model for the target language, which is
not applicable for our work, where no strong ASR
models exist. Using universal speech recognition
models shows more promise for under-resourced
languages. Models such as XLS-R (Conneau et al.,
2021) and MMS (Pratap et al., 2024) have demon-
strated promising ASR results in low-resource set-
tings (Macaire et al., 2022; Guillaume et al., 2022;
Tapo et al., 2024; Romero et al., 2024; Jimerson
et al., 2023). However, since these models are
trained on raw speech and lack textual information,
they cannot provide direct feedback on individual
segments. A more suitable alternative is a universal
phoneme recognizer (Li et al., 2020), which can
generate phone transcriptions for any language.

There is a robust history of prior work in evaluat-
ing the acoustic quality of audio using measures of
speech intelligibility derived from output of ASR or
proto-ASR systems (Holube and Kollmeier, 1996;
Sakoe and Chiba, 1978; Spille et al., 2018; Arai
et al., 2019). While this work is also relevant for
filtering audio for ASR datasets, it is orthogonal to
our own work, which focuses on identifying poor
quality transcripts rather than poor quality audio.

3 Data

We apply our metrics (see Section 4.1) to two
distinct classes of datasets. The CURATED class
consists of five well-curated, high-quality speech
datasets, ranging in size from 3.5h to 9h, which
we synthetically corrupt to simulate common field-
work transcription errors (see Section 4.2). The
languages include Bunun (bnn), Saisiyat (xsy), and
Seediq (trv), three Taiwanese indigenous languages
extracted from FormosanBank (Mohamed et al.,

2024). For each language, we use a subset of the
ePark (Aboriginal Language Research and Devel-
opment Foundation, 2023b) and ILRDF (Aborigi-
nal Language Research and Development Founda-
tion, 2023a) corpora, which consist of read speech
recorded by native speakers (Hartshorne et al.,
2024). We also included Mboshi (mdw), a Bantu
language from Congo-Brazzaville, part of the LIG-
Aikuma project1, and Duoxu (ers), a critically en-
dangered Sino-Tibetan language, included in the
Pangloss collection (Michailovsky et al., 2014).

The second class consists of 2-hour fieldwork
corpora from Pangloss (FIELDWORK) for Na-
makura (nmk), an Austronesian language spoken
on Vanuatu, and Thulung Rai (tdh), a Sino-Tibetan
language of Nepal. These consist exclusively of
fieldwork recordings and include annotations and
approximate transcripts. We use the FIELDWORK

datasets to demonstrate the efficacy of our methods
in a real-world fieldwork scenario.

All seven datasets2 were partitioned into train-
ing (70%), validation (10%), and test (20%) sets.
Dataset details are found in Table 1.

Several factors motivated our choice of these
specific languages. First, the FormosanBank cor-
pus contains an unusually large amount of high-
quality data. These languages also posed an ini-
tial layer of complexity due to their orthographic
conventions. For example, the glottal stop is typ-
ically represented with an apostrophe or straight
single quote, and the voiceless alveolar affricate
is denoted as c. Mboshi includes two non-ASCII
characters—E and ř—while Duoxu features sys-
tematic tone marking using superscript numerals
(e.g., ja22nje33 xe53nje33 tCi33 o ), adding another
dimension of orthographic variation.

4 Method

4.1 Transcript evaluation metrics

We consider two metrics for evaluating transcrip-
tion quality3. First, we present Phonetic Distance
Match (PDM), a novel metric for evaluating or-
thographic transcriptions against their correspond-
ing audio. PDM is calculated by transcribing an
utterance recording using a phone-level transcrip-
tion model and then measuring the edit distance
between the resulting transcription and the man-
ual reference transcription. Using Allosaurus (Li

1github.com/besacier/mboshi-french-parallel-corpus
2https://github.com/eleferrand/data_quality_eval
3https://github.com/eleferrand/data_quality_eval



et al., 2020) without fine-tuning, we automatically
generate phone-level transcripts for each utterance
in the corpus, which are then converted into their
closest corresponding ASCII characters using the
unidecode library.4 The orthographic reference
transcripts are also converted to ASCII to ensure
a shared character set. Finally, we compute the
normalized Levenshtein distance between the two
transcriptions and subtract from 1 to generate a
similarity metric ranging from 0 to 1. The scoring
process is illustrated in detail in Appendix Fig. 4.

The rationale behind using an ASCII-ized ver-
sion of IPA is as follows. We begin with the
observation that many languages currently being
documented are traditionally oral. Their orthogra-
phies are often introduced by outsiders who tend
adopt the Latin alphabet, with minor modifications.
Although exceptions exist (e.g., Ainu written in
Japanese katakana or Inuktitut written using Indige-
nous Canadian syllabics), the Latin script remains
the prevalent standard.

While we recognize that linguists and commu-
nity members who use the Latin alphabet are free to
use the characters as they wish in their writing sys-
tems, these newly devised orthographies are not ar-
bitrary. They are frequently influenced by existing
Latin-based writing systems and the International
Phonetic Alphabet (IPA). For example, a voiced
velar nasal is typically represented as N or ng, and
rarely as unrelated letters like p or r. Naturally,
inconsistencies can occur—such as c representing
/s/, /k/, or /S/ in French, or /ts/ in Seediq, but overall,
we expect the ASCII-ized forms to retain at least
phonemic consistency.

There are two advantages to our approach. First,
it does not require any prior knowledge about the
language or its phonetic inventory, which might
not be easily available for a poorly documented lan-
guage. Second, it does not require additional effort
or resources to create a rule-based or learned G2P
transformation of the data. In short, the method
can be applied to any language that uses at least a
partially ASCII-based transcription system without
requiring additional model training or in-depth re-
search into the phonetic properties of the language.

The second metric is the Connectionist Tem-
poral Classification (CTC) alignment posterior
probability. We use a large wav2vec (Baevski et al.,
2020) model5 to extract a speech representation

4https://pypi.org/project/Unidecode
5https://huggingface.co/facebook/wav2vec2-base-960h

from each utterance, again without fine-tuning; we
then apply CTC alignment (Graves et al., 2006) be-
tween the speech features and the manual transcrip-
tion and output the alignment posterior probability.
It is entirely independent of the PDM metric.

4.2 Synthetic dataset corruption

To simulate a dataset containing typical fieldwork
transcription errors, we arbitrarily select 20% of
each training set of the 5 CURATED datasets and
introduce transcription errors using three differ-
ent corruption methods: (1) Deleted: three ran-
dom words are removed from the transcription; (2)
Cropped: the final 50% of words in the transcrip-
tion are removed; (3) Swapped: the transcription is
randomly replaced with another from the training
set. For each language, we create three corrupted
datasets, each containing 20% of the utterances
corrupted in one of these three ways. Each utter-
ance/transcript pair in the three datasets is then
scored with the two metrics described in Sec. 4.1.
We then evaluate how accurate our metrics identi-
fied these corrupted utterances. Examples of cor-
rupted utterances can be found in Table 2.

4.3 ASR model building

All experiments are conducted with XLSR-53
(Conneau et al., 2021), a multilingual model based
on the wav2vec architecture. We train a CTC layer
for 30 epochs, selecting the best model with the val-
idation set. Decoding is performed using a trigram
LM trained on the training set for each language
and corruption setting. We follow the popular XLS-
R tutorial6 but do not freeze the feature extractor.

In our simulated scenario, we use the three cor-
rupted versions of each CURATED dataset (cf. Sec.
4.2). For each corrupted dataset, as well as for
the uncorrupted dataset, we train an ASR model to
determine the impact of each corruption on WER.
For each corrupted dataset, we then create three
filtered datasets: one in which we filter out 20% of
the utterances according to the strength of the PDM
metric; one where we do the same according to the
CTC metric. When training data is limited, remov-
ing utterances from the training set can negatively
impact performance. To ensure a fair comparison,
we also evaluate performance using a dataset where
the same percentage of utterances is removed from
the training data at random.

In our real-world scenario, we calculate the two

6https://huggingface.co/blog/fine-tune-xlsr-wav2vec2



Figure 1: WER across corruption configurations.

metrics on the utterances of the two FIELDWORK

datasets. For each dataset, we train ASR models
on the unfiltered dataset and on filtered datasets,
removing 5%, 10%, and 20% of the utterances
using the more promising PDM metric and via
random selection.

5 Results

5.1 Detecting corrupted transcripts

Figure 5 shows the full ROC curves and AUC val-
ues for all combinations of corruption type, dataset,
and metric. We see that PDM achieves near-perfect
AUC scores (0.89-0.98) for detecting utterances in
the Swapped configuration, very high scores for
Cropped (0.77-0.94), and strong scores for Deleted
(0.64-0.85). In contrast, CTC is consistently and
substantially less effective for all languages in all
three corruption settings, with some AUC scores
performing at chance in the Deleted and Cropped
setting. Notably, Duoxu and Mboshi exhibit lower
AUCs perhaps due to weak overlap in character set
with the English wav2vec model used (cf. Table
1). The Deleted configuration appears to be the
most challenging to detect for both metrics, but
with PDM showing a clear advantage over CTC.

5.2 ASR evaluation: Simulated fieldwork

The baseline results for both the uncorrupted and
corrupted CURATED datasets, shown in Figure 1,
reveal a clear trend. The Deleted configuration
causes the least degradation in WER. The Cropped
configuration generally yields the second-worst re-
sults, except for Mboshi, where Deleted performs
worse perhaps because of Mboshi’s shorter average
utterance length. Finally, the Swapped configura-
tion consistently produces the weakest WER.

Figure 2 shows changes in WER in the corrupted
datasets with and without filtering using the two
metrics, PDM and CTC, as well as the random
setting where 20% of the data is removed from a
corrupted dataset at random. In the Deleted setting,

PDM filtering has minimal impact, while CTC fil-
tering generally degrades WER. In the Cropped
setting, filtering with PDM improves WER except
for Duoxu, while CTC filtering again generally
degrades WER. In the Swapped setting, filtering
with PDM systematically and often dramatically
improves WER, while CTC filtering has little im-
pact except for Bunun and Saisiyat. Overall, the
superior performance of PDM filtering is quite con-
sistent, yielding better results than CTC filtering
in 14 out of 15 cases. The exception is Duoxu in
the Cropped setting. As already noted, Duoxu’s
writing system contains many non-ASCII charac-
ters, which may limit the performance of the PDM
metric in some cases.

In a few rare cases, ASR models trained on a
corrupted dataset outperform those trained on data
filtered using one of the two metrics. This typically
occurs when the filtering metric lacks sufficient
accuracy, as is observed in some languages with
the Deleted and Cropped configurations (see Figure
5), leading to the unintended removal of clean data
while allowing corrupted data to remain, ultimately
degrading performance. The Deleted setting, which
has a minor impact when utterances are relatively
long, may also serve unintentionally as a form of
corruption-based regularization.

5.3 ASR evaluation: Real-world fieldwork
Figure 3 shows the results of different thresholds
of PDM filtering and random filtering on the two
FIELDWORK real-world datasets. (We do not report
results for CTC given the weak utility observed in
the simulated fieldwork scenario both for corrup-
tion detection and as a filter.) For Thulung Rai,
a 5% filtering threshold proved the most effec-
tive, resulting in a decrease of several points in
WER, while higher thresholds and random filtering
resulted in WER increases. With the Namakura
dataset, WER consistently decreased as more data
was filtered using the PDM score, suggesting that a
significant portion of the corpus may contain tran-
scription errors. Filtering randomly for Namakura
yielded slight random variations in WER.

To better understand the utility of the PDM met-
ric for identifying poor transcripts, we manually
inspected the transcriptions of the lowest and high-
est 5% of utterances based on PDM scores for both
corpora. In Thulung Rai, 61% of the lowest scoring
utterances showed no issues, while 14% had mis-
matched transcriptions and 23% contained cropped
transcriptions. In contrast, 93% of the top scoring



(a) Deleted (b) Cropped (c) Swapped

Figure 2: WER for corrupted and filtered CURATED datasets in the simulated fieldwork scenario.

(a) PDM

(b) Random

Figure 3: WER for unfiltered and filtered FIELDWORK
datasets in the real-world fieldwork scenario.

utterances had correct transcriptions, with 6% miss-
ing a few words. For Namakura, only 11% of the
lowest scoring utterances had accurate transcrip-
tions, with 55% mismatched, 29% cropped, 3%
with cropped audio, and 1% missing some words.
Conversely, the highest scoring utterances had 97%
correct transcriptions, with 1.5% cropped and an-
other 1.5% missing words.

6 Conclusions and Future Work

This paper explores two metrics for identifying un-
suitable and inaccurate speech transcriptions to im-
prove ASR training from linguistic fieldwork data
with the goal of supporting language documenta-
tion. We find that our novel PDM metric and, to a
lesser extent, a CTC confidence metric are effective
in identifying erroneous transcriptions in both simu-
lated and real-world fieldwork datasets. Moreover,
filtering data using the PDM metric consistently
reduces WER in both simulated and real-world

fieldwork scenarios. In our future work, we plan
to investigate additional methods for identifying
poor transcriptions and to explore the relationship
between audio quality and transcription quality.

Limitations

Experimental results demonstrate that our PDM
method is highly effective for languages with a
limited number of non-ASCII characters. How-
ever, further experiments are needed to evaluate its
performance on languages with a larger set of non-
ASCII characters and non-Latin writing systems.
The proposed metrics efficiently identify major er-
rors, such as missing or mismatched transcripts,
but are less likely to detect spelling mistakes or in-
consistent transcription of specific speech sounds,
which could also significantly impact WER. While
these methods could be applied to high-resource
languages like French or German, such languages
may benefit more from approaches leveraging exist-
ing G2P models or pre-trained ASR systems trained
specifically for these languages.

Ethics Statement

Researchers must always be respectful of language
community concerns about data ownership when
working with Indigenous language data. All of our
data is gathered from public sources. In the case
of the Formosan languages, the two organizations
providing the data, the Indigenous Languages Re-
search and Development Foundation and the ePark
educational research organization, actively seek out
collaborations with computational researchers. The
other datasets are also made available on the Web
by their creators specifically with the goal of fur-
thering research in these languages, both linguistic
and computational. We have permission from the
creators and owners to redistribute the data in the
form of ASR datasets.



Acknowledgments

The authors thank Yuyang Liu, Li-May Sung, and
the Indigenous Languages Research and Develop-
ment Foundation, especially Akiw and Lowking
Nowbucyang, for generously providing data. This
material is based upon work supported by the Na-
tional Science Foundation under Grant #2319296.
Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of
the authors and do not necessarily reflect the views
of the National Science Foundation.

References
Aboriginal Language Research and Development Foun-

dation. 2023a. Online dictionary of aboriginal lan-
guages. https://e-dictionary.ilrdf.org.tw.

Aboriginal Language Research and Development Foun-
dation. 2023b. yuanzhumin yuyan leyuan (epark).
https://web.klokah.tw/.

Kenichi Arai, Shoko Araki, Atsunori Ogawa, Keisuke
Kinoshita, Tomohiro Nakatani, Katsuhiko Ya-
mamoto, and Toshio Irino. 2019. Predicting speech
intelligibility of enhanced speech using phone accu-
racy of DNN-based ASR system. In Interspeech,
pages 4275–4279.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in neural information processing systems,
33:12449–12460.

Alexis Conneau, Alexei Baevski, Ronan Collobert, Ab-
delrahman Mohamed, and Michael Auli. 2021. Un-
supervised cross-lingual representation learning for
speech recognition. Interspeech 2021.

Horia Cucu, Andi Buzo, and Corneliu Burileanu. 2014.
Unsupervised acoustic model training using multiple
seed asr systems. In Spoken Language Technologies
for Under-Resourced Languages.

Jonathan G Fiscus. 1997. A post-processing system
to yield reduced word error rates: Recognizer out-
put voting error reduction (ROVER). In 1997 IEEE
Workshop on Automatic Speech Recognition and Un-
derstanding Proceedings, pages 347–354. IEEE.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369–376.

Alex Graves and Alex Graves. 2012. Connectionist tem-
poral classification. Supervised sequence labelling
with recurrent neural networks, pages 61–93.

Séverine Guillaume, Guillaume Wisniewski, Benjamin
Galliot, Minh-Châu Nguyên, Maxime Fily, Guil-
laume Jacques, and Alexis Michaud. 2022. Plugging
a neural phoneme recognizer into a simple language
model: a workflow for low-resource setting. In Pro-
ceedings of Interspeech, pages 4905–4909.

Florian Hanke. 2017. Computer-Supported Cooperative
Language Documentation. Ph.D. thesis, Ph. D. thesis,
University of Melbourne.

Joshua K. Hartshorne, Éric Le Ferrand, Li-May Sung,
and Emily Prud’hommeaux. 2024. Formosanbank
and why you should use it. In Architectures
and Mechanisms in Language Processing (AMLaP)
Poster.

Inga Holube and Birger Kollmeier. 1996. Speech intelli-
gibility prediction in hearing-impaired listeners based
on a psychoacoustically motivated perception model.
The Journal of the Acoustical Society of America,
100(3):1703–1716.

Yan Huang, Dong Yu, Yifan Gong, and Chaojun Liu.
2013. Semi-supervised GMM and DNN acoustic
model training with multi-system combination and
confidence re-calibration. In Interspeech, pages
2360–2364.

Robert Jimerson, Zoey Liu, and Emily Prud’hommeaux.
2023. An (unhelpful) guide to selecting the best ASR
architecture for your under-resourced language. In
Proceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
1008–1016.

Denis Jouvet and Dominique Fohr. 2014. About com-
bining forward and backward-based decoders for
selecting data for unsupervised training of acoustic
models. In INTERSPEECH 2014, 15th Annual Con-
ference of the International Speech Communication
Association.

Tomáš Koctúr, Ján Staš, and Jozef Juhár. 2016. Unsu-
pervised acoustic corpora building based on variable
confidence measure thresholding. In 2016 Interna-
tional Symposium ELMAR, pages 31–34. IEEE.

Éric Le Ferrand. 2023. Leveraging Speech Recognition
for Interactive Transcription in Australian Aboriginal
Communities. Ph.D. thesis, Charles Darwin Univer-
sity.

Sheng Li, Yuya Akita, and Tatsuya Kawahara. 2016.
Data selection from multiple ASR systems’ hypothe-
ses for unsupervised acoustic model training. In 2016
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5875–5879.
IEEE.

Xinjian Li, Siddharth Dalmia, Juncheng Li, Matthew
Lee, Patrick Littell, Jiali Yao, Antonios Anastasopou-
los, David R Mortensen, Graham Neubig, Alan W
Black, et al. 2020. Universal phone recognition with
a multilingual allophone system. In ICASSP 2020-
2020 IEEE International Conference on Acoustics,

https://e-dictionary.ilrdf.org.tw
https://web.klokah.tw/
https://doi.org/10.21437/Interspeech.2022-11314
https://doi.org/10.21437/Interspeech.2022-11314
https://doi.org/10.21437/Interspeech.2022-11314


Speech and Signal Processing (ICASSP), pages 8249–
8253. IEEE.

Cécile Macaire, Didier Schwab, Benjamin Lecouteux,
and Emmanuel Schang. 2022. Automatic speech
recognition and query by example for Creole lan-
guages documentation. In Findings of the Associa-
tion for Computational Linguistics: ACL 2022.

Boyd Michailovsky, Martine Mazaudon, Alexis
Michaud, Séverine Guillaume, Alexandre François,
and Evangelia Adamou. 2014. Documenting and re-
searching endangered languages: The Pangloss Col-
lection. Language Documentation and Conservation,
8:119–135.

Wael Mohamed, Éric Le Ferrand, Li-May Sung, Emily
Prud’hommeaux, and Joshua Hartshorne. 2024. For-
mosanbank. https://ai4commsci.gitbook.io/
formosanbank.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
et al. 2024. Scaling speech technology to 1,000+
languages. Journal of Machine Learning Research,
25(97):1–52.

Monica Romero, Sandra Gómez-Canaval, and Ivan G
Torre. 2024. Automatic speech recognition advance-
ments for Indigenous languages of the Americas. Ap-
plied Sciences, 14(15):6497.

Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic
programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 26(1):43–49.

Constantin Spille, Stephan D Ewert, Birger Kollmeier,
and Bernd T Meyer. 2018. Predicting speech intelli-
gibility with deep neural networks. Computer Speech
& Language, 48:51–66.

H Su and H Xu. 2015. Multi-softmax deep neural net-
work for semi-supervised training. In Proceedings of
Interspeech, pages 3239–3243.

Allahsera Tapo, Éric Le Ferrand, Zoey Liu, Christopher
Homan, and Emily Prud’hommeaux. 2024. Lever-
aging speech data diversity to document Indigenous
heritage and culture. In Proceedings of Interspeech
2024, pages 5088–5092.

A Appendix

Table 1 shows the durations, token and type counts,
and non-ASCII character proportions of each of
the 7 datasets for reference purposes. As noted in
the paper, we have released these corpora and their
partitions for research purposes. We note that they
are derived in their entirety from publicly available
sources with licensing that permits redistribution
in other formats.

Table 2 provides examples of the three types of
corruption designed to mimic the kinds of errors
observed in fieldwork transcripts.

Figure 2 provides a walk-through of the PDM
calculation process with three example utterances.

Figure 5 plots all six ROC curves and reports
AUC measures for using each of the two metrics,
PDM and CTC, to identify corruptions for each
CURATED dataset under of the three corruption
settings.

Table 3 shows the WER results presented in the
paper in graphical format in Figure 2.
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Bunun Duoxu Mboshi Saisiyat Seediq Namakura Thulung Rai
Duration 8h34 7h57 3h28 8h14 8h53 1h53 2h18
Token 40166 61564 25671 39644 50123 18566 16296
Type 6846 2557 5621 4723 5608 1065 3965
Non-ASCII 0% 44% 23% 0% 2% 1% 8%

Table 1: Corpus size and token/type count for all datasets. We also provide the percentage of non-ASCII characters
which may have an impact on the utility of the PDM metric.

Config. Original Corrupted
Deleted wa adi pósá báabará wa kaá wa pósá wa

kobhá epřrřrř baá óyáála mwána anyřř epřrřrř óyáála mwána
Cropped maqasmav a abus malaitaz a savi maqasmav a abus

to seediq msgelu sa seediq mneyah alang kiya to seediq msgelu sa
Swapped supah a samah sia humacia anak anak sa ia maupacia minhanglas

tai hari niqan rebuq watan dao su trebuq hii slii hini kanna nnapa namu bunga

Table 2: Examples of input utterances and their corruptions from the three corruption configurations.

Figure 4: Demonstration of the PDM calculation method. In the upper left we see IPA transcripts generated from
audio by Allosaurus. In the upper right we see the corresponding reference orthographic transcription for the three
sample utterances. In the lower left are the phone-level transcripts converted to their ASCII equivalents often used
to represent those IPA symbols (e.g., with Sampa). In the lower right, the reference orthographic transcriptions
converted to ASCII, with spaces removed. We calculate normalized Levenshtein distance between the utterance in
the lower panels and subtract from 1 to create the PDM metric.



(a) Deleted PDM (b) Cropped PDM (c) Swapped PDM

(d) Deleted CTC (e) Cropped CTC (f) Swapped CTC

Figure 5: ROC curves comparing performance of PDM and CTC for retrieving corrupted trasncriptions under the
three corruption settings for all five of the CURATED datasets.

Corruption
Setting

Filtering
Method Bunun Duoxu Mboshi Saisiyat Seediq

Deleted

Unfiltered 0.2573 0.4464 0.4717 0.2600 0.1899
Random 0.4620 0.5008 0.5121 0.3943 0.3075
PDM 0.2754 0.4478 0.4446 0.2779 0.1947
CTC 0.3025 0.4562 0.6048 0.3002 0.2325

Cropped

Unfiltered 0.3065 0.4514 0.4268 0.3700 0.2692
Random 0.3372 0.4911 0.5402 0.3428 0.2473
PDM 0.3062 0.5311 0.4198 0.2908 0.2049
CTC 0.3351 0.4806 0.7046 0.3387 0.2034

Swapped

Unfiltered 0.4743 0.5759 0.5562 0.4500 0.3356
Random 0.4584 0.6538 0.5513 0.3994 0.4881
PDM 0.2940 0.4691 0.4951 0.2106 0.2036
CTC 0.3014 0.5800 0.5396 0.3421 0.3207

Table 3: WER for each combination of simulated corruption setting and filtering method for each of the five
CURATED datasets. This same information is visualized in bar graph format in Figure 2. The lowest WER in for
each language/corruption is boldfaced.
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